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SUMMARY 15

Approximate Bayesian computing is a powerful likelihood-free method that has grown in-
creasingly popular since early applications in population genetics. However, complications arise
in the theoretical justification for Bayesian inference conducted from this method with a non-
sufficient summary statistic. In this paper, we seek to re-frame approximate Bayesian computing
within a frequentist context and justify its performance by standards set on the frequency cover- 20

age rate. In doing so, we develop a new computational technique called approximate confidence
distribution computing, that yields theoretical support for the use of non-sufficient summary
statistics in likelihood-free methods. Furthermore, we demonstrate that approximate confidence
distribution computing extends the scope of approximate Bayesian computing to include data-
dependent priors without damaging the inferential integrity. This data-dependent prior can be 25

viewed as an initial ‘distribution estimate’ of the target parameter which is updated with the
results of the approximate confidence distribution computing method. A general strategy for
constructing an appropriate data-dependent prior is also discussed and is shown to often increase
the computing speed while maintaining statistical guarantees. We supplement the theory with
simulation studies illustrating the benefits of the confidence distribution method, namely the po- 30

tential for broader applications than the Bayesian method and the increased computing speed
compared to approximate Bayesian computing.

Some key words: Approximate Bayesian computing; Bernstein-von Mises; Confidence distribution; Exact inference;
Large sample theory.
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1. INTRODUCTION35

1·1. Background
Approximate Bayesian computing is a likelihood-free method that approximates a posterior

distribution while avoiding direct calculation of the likelihood. This procedure originated in pop-
ulation genetics where complex demographic histories yield intractable likelihoods. Since then,
approximate Bayesian computing has been applied to many other areas besides the biological sci-40

ences including astronomy and finance; cf., e.g., Cameron & Pettitt (2012); Marin et al. (2011);
Sisson et al. (2007). Despite its practical popularity in providing a Bayesian solution for complex
data problems, the theoretical justification for inference from this method is under-developed and
has only recently been explored in statistical literature; cf., e.g., Robinson et al. (2014); Barber
et al. (2015); Frazier et al. (2018); Li & Fearnhead (2018b). In this paper, we seek to re-frame the45

problem within a frequentist setting and help address two weaknesses of approximate Bayesian
computing: (1) lack of theoretical justification for Bayesian inference when using a non-sufficient
summary statistic and (2) slow computing speed. We propose a novel likelihood-free method as
a bridge connecting Bayesian and frequentist inferences and examine it within the context of the
existing literature on approximate Bayesian computing.50

Rather than deriving a likelihood, approximate Bayesian computing uses the assumption that
one may treat simulations as artificial experiments and compare observed and simulated sum-
mary statistics. We assume these simulations are observations of some data generating model,
Mθ, where θ ∈ P ⊂ Rp is unknown. To apply this computing method, we need not have an an-
alytically tractable expression for the likelihood of the data; instead, we need only assume that55

data may be generated by simulations of this scientific model.
The goal of approximate Bayesian computing is to produce draws from an approximation to

a posterior distribution for θ, given one has observed a random sample, xobs = {x1, . . . , xn}
from some unknown distribution with density f(xi; θ). The standard accept-reject version of
approximate Bayesian computing proceeds as follows:60

Algorithm 1. (Accept-reject approximate Bayesian computing)

1. Simulate θ1, . . . , θN ∼ π(θ);
2. For each i = 1, . . . , N , simulate x(i) = {x(i)1 , . . . , x

(i)
n } from Mθ;

3. For each i = 1, . . . , N , accept θi with probability K{ε−1(s(i) − sobs)}, where sobs =

Sn(xobs) and s(i) = Sn(x(i)).

In the above algorithm, the data is summarized by some low-dimension summary statistic, Sn(·)
(e.g., Sn(·) is a mapping from the sample space in Rn to S ⊂ Rd), and some distance metric,
defined by the kernel probability K(·) with bandwidth ε, compares it to simulated data. We refer
to ε as the tolerance level and typically assume it goes to zero. In many cases, ε is required65

to go to zero at a certain rate of n (cf., e.g., Li & Fearnhead (2018b)), but there are cases in
finite sample development in which ε is independent of sample size n. Sometimes the summary
statistic, s(i)n , can be directly simulated from Mθ. The underlying distribution from which these
N copies or draws of θ are generated is called the ABC posterior, with the probability density,

πε(θ | sobs) =

∫
S π(θ)f̃n(s; θ)K{ε−1(s− sobs)} ds∫

P×S π(θ)f̃n(s; θ)K{ε−1(s− sobs)} dsdθ
, (1)70

and corresponding cumulative distribution function denoted Πε(θ ∈ A | sobs). Here f̃n(s; θ) de-
notes the (typically unknown) density of the summary statistic. We will refer to f̃n(s; θ) as an s-
likelihood to emphasize that it is not a likelihood in any traditional sense. Since this is a Bayesian
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procedure, in addition to the assumption of the existence of a data-generating model, Mθ, Algo-
rithm 1 assumes a prior distribution, π(·), on θ. In the absence of prior information, the user may 75

select a flat prior.
A common assertion (see, e.g. Marin et al. (2011)) is that this ABC posterior is close enough

to the target posterior distribution, p(θ | x) ∝ π(θ)
∏n
i=1 f(xi; θ); however, the quality of the

approximation of an ABC posterior to its target posterior distribution depends on the closeness
of the tolerance level to zero and, more crucially for our purposes, on the choice of summary 80

statistic. Indeed, we have the following lemma:

Lemma 1. Let K(·) be a symmetric kernel function with
∫
uK(u)du = 0 and∫

‖u‖2K(u)du <∞. Suppose f̃n(s; θ) has a bounded second-derivative with respective
to s. Then

πε(θ | sobs) ∝ π(θ)f̃n(sobs; θ) +O(ε2). (2) 85

Various versions of this result are known (cf., e.g., Barber et al. (2015) and Li & Fearnhead
(2018a)); for completeness, we provide a brief proof of Lemma 1 in the appendix. If the summary
statistic is not sufficient, f̃n(sobs; θ) can be very different from

∏n
i=1 f(xi; θ), in which case the

ABC posterior can be a very poor approximation to the target posterior, even if ε→ 0. 90

Figure 1 provides such an example where we consider random data from a Cauchy distribution
with a known scale parameter. Only the data itself is sufficient for the location parameter, θ;
therefore, any reasonable choice of summary statistic will not be sufficient. Fig. 1 illustrates
that, without sufficiency, the ABC posterior approximations will never converge to the targeted
posterior distribution so the approximations to the target posterior can be quite poor. Specifically, 95

Fig. 1 shows two applications: one using the sample mean and the other using the sample median
as the summary statistic, each with a flat prior on the unknown location parameter. In neither case
is the ABC posterior the same as the targeted posterior regardless of sample size or the rate of
ε→ 0, including the rate typically required in the existing literature; cf., Li & Fearnhead (2018b).

For this reason, inference from the ABC posterior can produce misleading results within a 100

Bayesian context when the summary statistic used is not sufficient. Questions arise such as, if an
ABC posterior is different from the target posterior distribution, can it still be used in Bayesian
inference? Or, since different summary statistics can produce different ABC posteriors, can one
or more of these distributions be used to make statistical inferences?

In this paper, we attempt to address these questions by instead re-framing Algorithm 1 within 105

a frequentist context and consider a more general likelihood-free method based on confidence
distribution theory. To this end, we introduce a new computational method called approximate
confidence-distribution computing. Before introducing this new algorithm, we first quickly re-
view the concept of a confidence distribution.

1·2. Confidence distributions 110

When estimating an unknown parameter, we often desire that our estimators, whether point
estimators or interval estimators, have certain properties, such as unbiasedness or correct cover-
age of the true parameter value in the long run. A confidence distribution is an extension of this
tradition in that it is a distribution estimate (i.e., it uses a sample-dependent distribution function
to estimate the target parameter) that satisfies certain properties. Following Xie & Singh (2013), 115

Schweder & Hjort (2016) and references therein, we define a confidence distribution as follows.
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Fig. 1: Target posterior (gray) and ABC posteriors for data from a Cauchy distribution with
known scale parameter for both Sn = x̄ (solid black) and Sn = Median(x) (dashed black) for
a small observed sample sizes (n = 50) on the left and a very large sample size on the right
(n = 5000).

Definition 1. A sample-dependent function on the parameter space is a confidence distribution
for a parameter θ if 1) For each given sample the function is a distribution function on the
parameter space; 2) The function can provide confidence intervals/regions of all levels for θ.

Consider the following example taken from Singh et al. (2007). Suppose X1, . . . , Xn is a120

sample from N(µ, σ2) where both µ and σ2 are unknown. A confidence distribution for param-
eter µ is the function Hn(y) = Ft(n−1)

{
(y − X̄)/(sn/

√
n)
}

where Ft(n−1)
(·) is the cumulative

distribution function of a Student’s t-random variable with (n− 1) degrees of freedom and X̄
and s2n are the sample mean and variance, respectively. Here Hn(y) is a cumulative distribu-
tion function in the parameter space of µ from which we can construct confidence intervals125

of µ at all levels. For example, for any α ∈ (0, 1), one sided confidence intervals for µ are
(∞, H−1n (α)] and [H−1n (α),∞). Similarly, a confidence distribution for parameter σ2 is the
function Hn(σ2) = 1− Fχ2

n−1

[
{(n− 1)s2n}/(σ2)

]
, where Fχ2

n−1
(·) is the distribution function

of a Chi-squared random variable with (n− 1) degrees of freedom. Again, Hn(σ2) is a cumula-
tive distribution function in the parameter space of σ2 from which we can construct confidence130

intervals of σ at all levels.
We emphasize that, by definition, a confidence distribution is a sample-dependent distribution

function that can represent confidence intervals/regions of all levels for a parameter of interest.
Any confidence distribution approach will utilize a sample-dependent distribution function to
estimate the unknown parameter; thus a confidence distribution is actually an expression of in-135

ference (i.e. an estimator of the parameter in the form of a distribution function), rather than a
distribution for the parameter.

A confidence distribution estimator has a similar appeal to a Bayesian posterior in that it is a
distribution function carrying much information about the parameter. A confidence distribution
however, is a frequentist notion which treats the parameter as a fixed and unknown quantity,140

and we judge its performance by the frequency coverage such that a interval/region for θ ob-
tained from a confidence distribution can contain the true parameter value, θ0, at any specified
frequency. We will refer to this property as the frequentist coverage property of confidence dis-
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tributions. We hope to demonstrate that the construction of approximate confidence distribution
computing as a likelihood-free method provides one of many examples in which confidence dis- 145

tribution theory provides a useful inferential tool for a problem where a statistical method with
desirable properties was previously unavailable. For more details on confidence distributions see
Xie & Singh (2013), Schweder & Hjort (2016), and references therein.

1·3. Approximate confidence distribution computing
We now formally introduce approximate confidence distribution computing, as an alternative 150

to approximate Bayesian computing (Algorithm 1). The theoretical foundation for approximate
confidence distribution computing relies upon the frequentist coverage property of confidence
distributions. It also provides a computational method with potential applications extending be-
yond the scope of Algorithm 1. Additionally, as will be discussed later, approximate confidence
distribution computing introduces some flexibility that can greatly decrease computing costs. 155

Approximate confidence distribution computing proceeds in the same manner as Algorithm
1, but no longer requires a prior assumption on θ; instead, the user is free to select a data-
dependent distribution function, rn(·), from which potential parameter values will be generated.
Specifically, the new algorithm proceeds as following:

Algorithm 2. (Accept-reject approximate confidence distribution computing) 160

1. Simulate θ1, . . . , θN ∼ rn(θ);
2. and 3. are identical with steps 2. and 3. of Algorithm 1.

The underlying distribution from which these N copies of θ are simulated is called the ACC con-
fidence distribution, and it has the probability density rε(θ | sobs) defined by replacing π(θ) in
(1) with rn(θ). Denote the corresponding distribution function by Rε(θ ∈ A | sobs). We use the
notation θACC to represent a random draw from this function. When rn(θ) = π(θ), Algorithm
2 is the same as Algorithm 1; in this way, approximate Bayesian computing can be viewed as a 165

special case of approximate confidence distribution computing.
From a Bayesian perspective, one may view Algorithm 2 as as an extension permitting the use

of approximate Bayesian computing in the presence of a data-dependent prior. However, there
is another natural, frequentist interpretation that views the function rn(·) as an initial distribu-
tion estimate for θ and views Algorithm 2 as a method that updates this estimates in pursuit 170

of a better-performing distribution estimate. The logic of this frequentist interpretation is anal-
ogous to any updating algorithm in point estimation (e.g., say, a Newton-Raphson algorithm or
an Expectation-maximization algorithm), which requires an initial estimate and then updates a
search for a better-performing estimate. There is a question whether the data are ‘doubly used’.
The answer depends on how the initial rn(·) is chosen. Under some constraints on rn(·), Algo- 175

rithm 2 can guarantee a distribution estimator for θ that satisfies the frequentist coverage prop-
erty, although Algorithm 2 may not ensure the efficiency of this distribution estimator unless the
summary statistic is sufficient.

1·4. Related work
Likelihood-free methods such as approximate Bayesian computing have existed for more than 180

20 years, but research regarding the theoretical properties of these methods is a newly active area
(e.g. Li & Fearnhead (2018b); Frazier et al. (2018)). Here we do not attempt to give a full review
of all likelihood-free methods (e.g. Marin et al. (2011)) but we acknowledge the existence of
alternatives such as indirect inference (e.g. Creel & Kristensen (2013); Gourieroux et al. (1993)).

One of our theoretical results specifies conditions under which approximate confidence dis- 185

tribution computing produces an asymptoticly normal confidence distribution. This result, pre-
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sented in Section 3, mirrors the work of Li & Fearnhead (2018b) and Frazier et al. (2018) on the
asymptotic normality of the ABC posterior distribution. However, in contrast to these papers, we
are not concerned with viewing the result of Algorithm 2 as an approximation to some posterior
distribution, rather we focus on the properties of this distribution inherited through its connection190

to confidence distributions. More importantly, the properties we develop here allow us to con-
duct statistical inference with a guaranteed performance standard. In Section 2 we discuss how
Algorithm 2 can be used in exact inference by not relying on any sort of asymptotic (large n)
assumptions or normally distributed populations. Aside from the errors of Monte-Carlo approx-
imation and the choice of tolerance level, exact inference from Algorithm 2 ensures the targeted195

repetitive coverage rates and type-I errors.
This paper presents the novel idea that the continued study of likelihood-free methods would

benefit from the incorporation of confidence distribution theory. To this end, and for the ease of
presentation, we mainly focus on the basic accept-reject version of Algorithm 2. We conclude
that much of the existing work in the approximate Bayesian computation literature can also be200

applied to Algorithm 2 to further improve upon its computational performance as discussed in
Sections 2 and 5.

1·5. Notation
Throughout the paper we will use the following notation. The observed data is xobs ∈ X ⊂ Rn,

the summary statistic is a mapping Sn : X→ S ⊂ Rd and the observed summary statistic is205

sobs = Sn(xobs). The parameter of interest is θ ∈ P ⊂ Rp with p ≤ d ≤ n; i.e. the number of
unknown parameters is no greater than the number of summary statistics and dimension of the
summary statistic is no greater than the dimension of the data. If some function of Sn is an esti-
mate for θ, we denote this function by θ̂S . Let θ0 represent the fixed, true value of the parameter
θ. We will refer to the distributions resulting from Algorithms 1 and 2 by their mathematical210

notations πε and rε, respectively. Let θACC represent a random draw from rε.
Additionally, for a series zn, we use the notation that zn ≈ an, if there exists constants m

and M such that 0 < m < |zn/an| < M < 1 as n→∞ and for a real function g(x), denote its
gradient function at x = x0 by Dx{g(x0)}.

2. ESTABLISHING FREQUENTIST GUARANTEES FOR APPROXIMATE CONFIDENCE215

DISTRIBUTION COMPUTING

Loosely speaking, if the randomness in the Monte-Carlo simulation from rε matches that of
the sampling population, then approximate confidence distribution computing can be used to
help us answer inference questions with frequentist guarantees on performance. In this section,
we formally derive this statement and establish conditions under which Algorithm 2 can be used220

to produce confidence regions with guaranteed coverages at all levels.
To motivate our main theoretical result, we first consider the simple case where we have a

scalar parameter, θ, and θ̂S is a function that maps the summary statistic into the parameter space
P = (−∞,∞). Suppose further that the Monte-Carlo copy of (θACC − θ̂S) | Sn = sobs and the
sampling population copy of (θ̂S − θ) | θ = θ0 have the same distribution:225

(θACC − θ̂S) | Sn = sobs ∼ (θ̂S − θ) | θ = θ0, (3)

Then, we can conduct inference for θ with a guaranteed performance. On the left hand side
of (3), θ̂S is fixed given sobs so the probability measure is with respect to θACC , meaning the
randomness is due to the simulation conducted in Algorithm 2. Conversely, on the right hand
side, θ̂S is a random variable since randomness is due to the random data before observation.
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This is very similar to the bootstrap central limit theorem that n1/2(θB − θ̂B) | Sn = sobs ∼ 230

n1/2(θ̂B − θ) | θ = θ0, as n→∞, where appropriate; cf, Singh (1981) and Freedman & Bickel
(1981). There, the randomness on the left hand side is from the bootstrap estimator, θB given
Sn = sobs, and the randomness on the right hand side is from the random sample, Sn.

LetG(t) = pr(θ̂S − θ0 ≤ t | θ = θ0), and for simplicity assume that we also have pr∗(θACC −
θ̂S ≤ t | sobs) = G(t). Here pr∗(· | sobs) refers to the probability measure on simulation given 235

Sn = sobs corresponding to the left hand side of (3). Define Dn(t) = D(t, sobs) = pr∗(2θ̂S −
θACC ≤ t | sobs), a mapping from P × S → (0, 1). Given sobs, Dn(t) is a sample-dependent
cumulative distribution function on P .

[Claim] Under the setup above, Dn(t) is a confidence distribution for θ and, for any α ∈ (0, 1),
(−∞, D−1n (1− α)] = (−∞, 2θ̂S − θACC,α] is an (1− α)-level confidence interval of θ. 240

In the claim, D−1n (α) is the quantile of Dn(·), i.e., the solution of Dn(t) = α, and θACC,α is a
quantile of θACC , defined by pr∗(θACC ≤ θACC,α | sob) = α. A proof of the claim is provided
in the appendix.

Now we introduce a key lemma that generalizes the argument above to a multidimensional
parameter and a wider range of relationships between Sn and θACC . This lemma assumes a re- 245

lationship between two mappings V and W : P × S → Rk, where V (·, Sn) is a function that
acts on the parameter space P , given Sn = sob, and W (θ, ·) is a function that acts on the
space of the summary statistic S ⊂ Rd, given θ = θ0. For example, in the argument above,
V (t1, t2) = −W (t1, t2) = t1 − θ̂(t2), where θ̂ is a function of the summary statistic; however,
we may also wish to consider other non-linear mappings. Corresponding to (3), we require a 250

matching equation: V (θACC , Sn) | Sn = sob ∼W (θ, Sn) | θ = θ0. More formally, we consider
the following condition:

[Condition A] For B a Borel set on Rk,

sup
A∈B
‖pr∗{V (θACC , Sn) ∈ A | Sn = sob} − pr{W (θ, Sn) ∈ A | θ = θ0}‖ = op(ε),

For a given sob and α ∈ (0, 1), define a set A1−α ⊂ Rk such that,

pr∗{V (θACC , Sn) ∈ A1−α | Sn = sob} = (1− α) + o(δ), (4)

where δ > 0 is a pre-selected small positive precision number δ → 0. Condition A implies that 255

Γ1−α(sob) = {θ : W (θ, sob) ∈ A1−α} ⊂ P is a level (1− α)100% confidence region for θ0.
We summarize this in the following lemma which is proved in the appendix.

Lemma 2. Suppose that there exists mappings V and W : P × S → Rk such that Condition
A holds. Then, pr{θ0 ∈ Γ1−α(Sn)} = (1− α) + op(ε ∨ δ). If further Condition A holds almost
surely, then pr{θ0 ∈ Γ1−α(Sn)} = (1− α) + o(ε ∨ δ), almost surely. 260

In the above, there are no requirements on the sufficiency of the summary statistic. Also,
ε in Condition A is the tolerance level for the matching of simulated S(i) and sobs in Step 3
of Algorithm 2, and it may or may not depend on the sample size n. Furthermore, δ in (4) is
designed to control Monte-Carlo approximation error. So whether or not Lemma 2 is a large
sample result depends only on whether or not we require ε→ 0 at a certain rate of the sample 265

size n. Later in this section, we will consider a special case that is sample-size independent; then
Section 3 extends the large sample Bernstein-von Mises theory to Algorithm 2, using a tolerance
that does depend on n.

Before we move on to verify Condition A for different cases, we first relate equation (4)
to θACC samples from rε. Suppose θi, i = 1, . . . , N , are N Monte-Carlo copies of θACC . Let 270
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vi = V (θi, sob). The set A1−α can typically be a (1− α)100% contour set of {v1, . . . , vN} with
o(δ) = o(N−1/2) . For example, we can directly use v1, . . . , vN to construct a 100(1− α)%

depth contour asA1−α = {θ : (1/N)
∑N

i=1 I{D̂(vi) < D̂(θ)} ≥ α}, where D̂(·) is an empirical
depth function on P computed based on the empirical distribution of {v1, . . . , vN}. See, e.g.,
Serfling (2002) and Liu et al. (1999) for the development of data depth and depth contours in275

nonparametric multivariate analysis. In the special case where k = 1, by defining q̂α = v[Nα],
the [Nα]th largest v1, . . . , vN , a (1− α)100% confidence region for θ0 can then be constructed
as Γ1−α(sob) = {θ : q̂α/2 ≤W (θ, sob) ≤ q̂1−α/2} or Γ1−α(sob) = {θ : W (θ, sob) ≤ q̂1−α}.

We also remark that the existing literature on likelihood-free methods typically relies upon
obtaining a “nearly sufficient” summary statistic to justify inferential results; see e.g., Joyce &280

Marjoram (2008). In this paper however, we explore guaranteed frequentist properties of Al-
gorithm 2 that hold without regard to a “sufficient enough” summary statistic. However, if the
summary statistic happens to be sufficient, then an appropriate choice of the initial ballpark esti-
mate, rn, means that inference based on the resulting distribution, rε, is also efficient.

To end this section, Theorem 1 explores a special case of Algorithm 2 in location and scale285

families. In this case, the integrity of the inference based on rε is ensured without relying on
large sample theory or a Gaussian assumption. The proof is given in the appendix.

Theorem 1. Assume µ̂S = µ̂(S1) and σ̂S = σ̂(S2) are point estimators for location and scale
parameters µ and τ , respectively, and S1, S2 ∈ R are two summery statistics.
Part 1 Suppose µ̂S ∼ g1(µ̂S − µ). If rn(µ) ∝ 1 then, for any u,

| pr∗{µACC − µ̂S ≤ u | µ̂obs} − pr{µ̂S − µ ≤ u | µ = µ0} |= o(ε), almost surely.

Part 2 Suppose σ̂S ∼ 1/σg2 (σ̂S/σ). If rn(σ) ∝ 1/σ then, for any v > 0,

| pr∗
{
σACC
σ̂S

≤ v | σ̂obs
}
− pr

{
σ̂S
σ
≤ v | σ = σ0

}
|= o(ε), almost surely.

Part 3 Suppose µ̂S ∼ (1/σ)g1 ((µ̂S − µ)/σ) and σ̂S ∼ (1/σ)g2 (σ̂S/σ) are independent. If
rn(µ, σ) ∝ 1/σ, then, for any u and any v > 0,

| pr∗
{
µACC − µ̂S ≤ u,

σACC
σ̂S

≤ v | µ̂obs, σ̂obs
}
−

pr
{
µACC − µ̂S ≤ u,

σ̂S
σ
≤ v | µ = µ0, σ = σ0

}
|= o(ε), almost surely.

Furthermore, we may derive H1(µ̂S , x) = 1−
∫ µ̂S−x
−∞ g1(w)dw, a confidence distribution for µ290

induced by (µ̂S − µ) given µ = µ0 or H2(σ̂
2
S , x) = 1−

∫ σ̂2
S/x

0 g(w)dw, a confidence distribu-
tion for σ2 induced by σ̂2S/σ

2 given σ = σ0.
Theorem 1 represents a departure from the typical asymptotic arguments supporting

likelihood-free methods and permits the use of Algorithm 2 in forming confidence inter-
vals/regions with potentially exact correct frequentist coverage. If we have an exact pivot for295

some unknown parameter, then the only source of approximation in the inference resulting from
Algorithm 2 is due to the computational requirements on ε. We remark that Theorem 1 can be
generalized beyond the location-scale family with some additional technical conditions on the
initial ballpark estimate.
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3. FREQUENTIST COVERAGE PF APPROXIMATE CONFIDENCE DISTRIBUTION COMPUTING 300

FOR LARGE SAMPLES

3·1. Bernstein-von Mises result for approximate confidence distribution computing
Theorem 2 below enables the construction of a confidence region with asymptotically correct

coverage property using the output of Algorithm 2. For approximate Bayesian computing, it is
known that Condition A can be satisfied by a Bernstein-von Mises type convergence when εn 305

degenerates to 0 fast enough (Li & Fearnhead, 2018a). Theorem 2 extends the Bernstein-von
Mises type convergence to approximate confidence distribution computing. The key condition to
obtain this result is the following central limit theorem for the summary statistic.

[C1] There exists a sequence an, satisfying an →∞ as n→∞, a d-dimensional vector η(θ)
and a d× d matrix A(θ), such that for all θ ∈ P0, 310

an{sn − η(θ)} → N(0, A(θ)), as n→∞,

in distribution. We also assume that sobs → η(θ0) in probability. Furthermore, it holds that
(i) η(θ) and A(θ) ∈ C1(P0), and A(θ) is positive definite for any θ; (ii) for any δ > 0
there exists a δ′ > 0 such that | η(θ)− η(θ0) |> δ′ for all θ satisfying | θ − θ0 |> δ; and
(iii) I(θ) ,

{
∂
∂θη(θ)

}T
A−1(θ)

{
∂
∂θη(θ)

}
has full rank at θ = θ0.

Assuming that we also satisfy the regulatory conditions C5–C9 in the appendix, as established 315

in Li & Fearnhead (2018a), we now show that this convergence can be generalized to apply to a
data-dependent rn(·), so that Condition A can be satisfied for Algorithm 2.

Below are conditions on rn(·): Suppose there exists a sequence {τn} and δ > 0, such that

[C2] τn = o(an) and supθ∈Bδ τ
−p
n rn(θ) = Op(1),

[C3] rn(θ) ∈ C1(P0) and τ−pn rn(θ0) = Θp(1), and 320

[C4] supθ∈Rp τ
−1
n

∂
∂θ [τ−pn rn(θ)] = Op(1).

In the conditions, an, the convergence rate of sn, is dominated by τn, a rate that standardizes
the multivariate function rn(θ) within some δ-ball. So in essence, C2 and C3 require rn(·) to be
more dispersed than the s-likelihood for θ within a compact setP0. C4 requires the first derivative
of standardized rn(θ) to converge with rate τn. These are weak conditions and can be satisfied 325

by, e.g. rn(θ) being a local asymptotic normality model. Let θε be the expectation of θ under
rε(θ, sn) ∝ rn(θ)f̃n(sn | θ).

Theorem 2. Assume C1 and that rn(θ) satisfies C2—C4 and εn = o(a−1n ) as n→∞. If we
can also assume C5–C8 of the appendix and if the following statements hold:

sup
A∈Bp

∥∥∥∥Rε{an(θACC − θε) ∈ A | sn = sobs} −
∫
A
N
(
t; 0, I(θ0)

−1) dt∥∥∥∥→ 0,

in probability, and 330

an(θε − θ0)→ N
(
0, I(θ0)

−1) ,
in distribution, then Condition A is satisfied with {V (θACC , sn) | sn = sobs} = an(θACC − θε),
W (sn, θ0) = an(θε − θ0) and replacing ε with sample-size-dependent εn.

3·2. Comparing approximate Bayesian computing and approximate confidence distribution
computing

Theorem 2 says that the sufficiently small εn for the ACC confidence distribution is o(a−1n ), 335

the same as that for the ABC posterior distribution, and with such εn, the confidence region for
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θ0 with asymptotically correct coverage can be constructed as outlined in Section 2. In prac-
tice, since in most cases θε does not have closed form, it is estimated by the sample of θACC.
In conjunction with Proposition 1 of Li & Fearnhead (2018a) on the convergence of the ABC
posterior, Theorem 2 shows that Rε and Πε are the same to the first order for sufficiently small340

ε. This demonstrates the computational advantage of using a data-dependent rn(·) because, if
the same εn is used for Algorithm 1 and Algorithm 2, the output of both will have the same
asymptotic distribution but the latter has higher Monte Carlo efficiency due to the fact that any
rn(·) satisfying C2–C4 is closer to the s-likelihood than π(·) thus resulting in higher acceptance
probabilities.345

One drawback of using the sufficiently small ε in Algorithm 1 is the degeneracy of Monte
Carlo efficiency as n→∞which occurs since the acceptance probability for any proposal distri-
bution will degenerate to zero (Li & Fearnhead, 2018a). This means that most simulated datasets,
which are often computationally expensive, will be wasted when the data are informative. It is
easy to see that Algorithm 2 also suffers from the same issue with any choice of rn(·). From this350

point of view it may be more practical to use εn outside this regime; however, a larger εn will
always cause the parameter uncertainty to be overestimated by πε.

This highlights the tension in approximate Bayesian computation between choice of band-
width that will lead to more accurate inferences versus choices to reduce the computational cost.
For Algorithm 2, although a larger εn does not necessarily invalidate the existence of the desired355

mappings V and W , the overall performance might not be comparable to Algorithm 1 for larger
εn and hence it is not always preferable to adapt a data-dependent rn(θ). This is illustrated in the
following Gaussian example.

Example 1. Consider a univariate normal model with mean θ and unit variance and consider
observations that are independent identically distributed from the model with mean value θ0.360

Assume the prior distribution of θ is standard normal, and rn(θ) is the density N(θ;µn, b
−2
n )

for some sequences µn and bn. Assume µn and bn satisfy that bn(µn − θ0) = O(1) and bn =
o(n1/2) as n→∞. This is a natural assumption for rn(θ) to be a reasonable proposal density,
because it guarantees that rn(θ) well covers the true parameter θ0 and is more dispersed than the
s-likelihood. In Algorithms 1 and 2, the summary statistic is the sample mean and the acceptance365

kernel is Gaussian with variance ε2n. For this toy model, both πε and rε have the same closed
form N(θ; θε, σ

2
ε) where

θε =
sob+ b2n(1/n+ ε2)µn

1 + b2n(1/n+ ε2)
, σ2ε =

1/n+ ε2

1 + b2n(1/n+ ε2)
.

Consider the scaled mean n1/2(θε − θ0) as in Theorem 2. For the ABC posterior, some alge-
bra shows that εn is negligible when ε = o(n−1/4) and the scaled ABC posterior mean has the
asymptotic distribution N(0, 1) as n→∞. For the ACC confidence distribution, by decompos-370

ing the scaled mean of the confidence distribution as ∆1n
1/2(sob− θ0) + ∆2bn(µn − θ0) where

∆1 =
1

1 + b2n(1/n+ ε2)
, ∆2 =

√
nbn(1/n+ ε2)

1 + b2n(1/n+ ε2)
,

it can be seen that εn is negligible only when εn = o(b
−1/2
n n−1/4) and only then n1/2(θε − θ0)

has the same asymptotic distribution, N(0, 1). As n→∞, if b1/2n n1/4εn does not degenerate to
zero, then neither does ∆2 so the asymptotic variance of n1/2(θε − θ0) is overinflated by a con-
stant or diverging factor. Therefore with such sufficiently small εn, the asymptotic performance375

of the ACC confidence distribution mean is inferior to that of the ABC posterior mean. However,
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since Algorithm 2 is still superior to Algorithm 1 computationally by having a higher acceptance
probability, their overall performance is incomparable.

On the other hand, when εn is larger than the sufficiently small ε, i.e. not in the order of
o(n−1/2), the ABC posterior variance σε over-inflates the targeted posterior variance by a con- 380

stant or a rate that goes to infinity. Hence it is more difficult to estimate the posterior variance
accurately than it is to obtain an accurate point estimate.

3·3. Comparison with regression adjustment
One remedy to reduce the overinflated uncertainty in the distribution estimate of Algorithm

1 is to apply the regression adjustment on its output (Beaumont et al., 2002). It has been sug- 385

gested to routinely apply the regression adjustment on Algorithm 1 in order to correctly quantify
the estimated uncertainty, yielding inference that is accurate in terms of both point estimates
and the variance of distributional estimates with εn decaying more slowly than o(n−1/2) (Li &
Fearnhead, 2018a).

We suggest applying the regression adjustment to Algorithm 2 for a similar reason. Denote 390

a sample from the ACC conditional distribution by {(θi, s(i))}i=1,...,N . A new sample can be
obtained by using {θi − β̂ε(s(i) − sobs)}i=1,...,N where β̂ε is the least square estimate of the
coefficient matrix in the linear model

θi = α+ β(s(i) − sobs) + ei, i = 1, . . . , N,

where ei are independent identically distributed error. The new sample can be seen as a draw from
the distribution θ∗ = θ − βε(s− sobs), where (θ, s) ∼ rε(θ, s) and βε is from the minimizer 395

(αε, βε) = argminα,βEε
{
|| θ − α− β(s− sobs) ||2 sobs

}
for expectation under the joint distribution of (θ, s), but with βε replaced by its estimator.

The following theorem states that regression adjusted approximate confidence distribution
computing has the same favored property as regression adjusted approximate Bayesian comput-
ing. Let θ∗ε be the expectation of the regression adjusted θACC values, θ∗ACC , under rε(θ, s).

Theorem 3. Assume the conditions of Theorem 2 and additionally assume C9 of the appendix. 400

If εn = o(a
−3/5
n ) as n→∞ and if the following statements hold:

sup
A∈Bp

| Rε{an(θ∗ACC − θ∗ε) ∈ A | sn = sobs} −
∫
A
N
(
t; 0, I(θ0)

−1) dt | P−→ 0, and

an(θ∗ε − θ0)
d−→ N

(
0, I(θ0)

−1) ,
then Condition A is satisfied with [V (θACC , sn) | sn = sob] = an(θ∗ACC − θ∗ε), W (θ0, sn) =
an(θ∗ε − θ0) and replacing ε with εn.

Theorem 3 indicates the adjusted sufficiently small ε for the ACC confidence distribution is 405

o(a
−3/5
n ), the same as for the adjusted ABC posterior. With such εn, the desired confidence

region for θ0 can be constructed as in Section 2 using the new sample, again illustrating the
computational advantage of a data-dependent rn(·).

3·4. Guidelines for selecting the initial ballpark distribution estimate
The generality of approximate confidence distribution computing is that it can produce jus- 410

tifiable inferential results with weak conditions on a possibly data-dependent initial ballpark
distribution estimate. In general, one should be careful in choosing this estimate, rn, to ensure its
growth with respect to the sample size is slower than the growth of the s-likelihood, according
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to C2. We now propose a generic algorithm to construct this initial ballpark estimate. Suppose
the observed dataset is x of size n. Given the summary statistic s = S(x), assume that a point415

estimate θ̂(s) of θ can be computed.

[Step1] Choose k subsets of the observations, each with size nδ for some 0 < δ < 1.
[Step2] For each subset xi of x, compute the point estimate θ̂i = θ̂(si) where si = s(xi), for

i = 1, . . . , k.
[Step3] Let rn(θ) = 1/(kh)

∑k
i=1K

{
(θ − θ̂i)/h

}
, where K is any kernel function satisfying420

C6 and h > 0 is the bandwidth of the kernel density estimate using {θ̂1, . . . , θ̂k}.

By choosing δ < 3/5, we ensure C2–C4 are met and that the ε selected by accepting a reasonable
proportion of simulations in Algorithm 2 is sufficiently small, provided the rate of s is a power
function of n. Based on our experience, if n is large one may simply choose δ = 1/2; however,
for small n, say n < 100, it is better to select δ > 1/2. For problems with an intractable likeli-425

hood, possible choices of θ̂(s) include the estimator maximizing an approximate likelihood that
is a function of s or the minimizer of the average distance as a function of θ between simulated s
and sobs (Meeds & Welling, 2015). A full study of the choice of θ̂(s) is beyond the scope of this
paper.

It is important to recognize the trade-off in approximate confidence-distribution computing430

between faster computations and guaranteed frequentist inference. Whilst one may choose to
iteratively update rn(·) for the sake of computing time, this may risk violating C2–C4. If these
assumptions are violated, then the resulting simulations do not necessarily form a confidence
distribution and consequently inference based on a sample from rε may not be valid in the fre-
quentist sense. However, provided C1–C4 hold and the observed data is large enough, Theorem 2435

shows that regardless of the choice of the initial ballpark estimate, Algorithm 2 always produces
the same confidence distribution.

4. EMPIRICAL EXAMPLES

4·1. Cauchy data
The first few examples we discuss are continuations of Fig. 1 from the introduction. Suppose440

we observe random data, (x1, . . . , xn), from a Cauchy(θ, τ) distribution. We wish to produce
95% confidence intervals or regions for each or both of the model parameters.

First, consider the case where θ is unknown but τ is known. Here we consider applying ACC
with summary statistic Sn = Median(x1, . . . , xn) and we consider two different data-driven
choices of rn(θ) and note the requirement of C1 is met since445

n1/2(Sn − θ)
L−→ N

(
0, π2τ2/4

)
.

Hence, provided we choose rn(θ) to satisfy C2–C4, we can use ACC to find valid frequentist

confidence intervals for θ. We first consider rn1(θ) ∝
[
1 + {(x̄− θ)/τ2}2

]−1
, where τ2 > τ ,

which focuses the ACC draws around the mean of the observed data. Although this choice of
rn1 is already faster than the analogous ABC method with a flat prior, π(θ) ∝ 1, (see Figure
2), we can improve upon the efficiency of the ACC algorithm with an even more informative450

choice, say, rn2(θ). Define rn2 according to the scheme outlined in Section 3.4, i.e. rn2(θ) ∝∑k
i=1 φ {(θ − Sni)/h} , where h > 0 is some choice of kernel bandwidth, φ is the standard

normal density function, and k = nδ for some δ ∈ (0, 1). The plots of rn1 and rn2 are contrasted
with the plot of a flat prior used in ABC in Fig. 2.
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In the numerical study, we observe a sample of size n = 400 and assume τ = 0.55 is known 455

and compare the results of ABC to ACC in Fig. 2. For ACC with rn1 we choose τ2 = 10 and
for ACC with rn2 we set h = 0.09198 (chosen by R’s default density() function) and δ = 1/2.
Each box-plot represents the kept unadjusted or regression-adjusted parameter draws from the
corresponding ACC or ABC distribution.

The coverage of the 95% confidence intervals for the true parameter value (θ = 10) over 100 460

independent runs of ACC is given in parentheses. In Fig. 2, these two applications of ACC clearly
display the computational advantage in the flexible choice of rn(·) which drastically improves
the acceptance rates compared to ABC.
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Fig. 2: Plots of the estimated parameter values from 100 independent samples of Cauchy location
data with Sn = Median(x1, . . . , xn). The true parameter value is θ = 10; the coverage of the
95% ACC-based confidence intervals and the regression adjusted intervals is in parentheses;
regression adjusted estimates are denoted with (∗); acceptance rates are on the bottom row. (a)
ABC estimate for θ using a flat π(θ). (b) ACC estimate for θ using rn1(θ). (c) ACC estimate for θ
using rn2(θ). (d) Comparison of the distributions on the parameter space defined by π(θ) (gray),
rn1(θ) (solid black), and rn2(θ) (dotted black).

Next, consider the case where τ is unknown and θ is known. Consider τ̂S as a summary statistic
for τ where 465

τ̂S = exp(0.5[Median{log | (xi − θ̂S)(xj − θ̂S) |}]),

for θ̂S = Median(x1, . . . , xn) and 1 ≤ i, j ≤ n, i ≤ j. This is the Hodges-Lehman scale esti-
mator for the Cauchy distribution which follows a scale family distribution as shown in Kravchuk
& Pollett (2012). Specifically,

n1/2(log τ̂S − log τ)
L−→ N(0, 2).

Hence, in-line with Theorem 2, we can derive valid frequentist confidence intervals for τ using
an rn(τ) that satisfies assumptions C2–C4. Here we choose rn(τ) ∝ 1/τ . 470

In this simulation, we observe a sample of size n = 400 and assume θ = 10 is known. The
resulting estimates for τ from ACC and ABC (both with and without the regression adjustment)
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and the coverage of the 95% confidence intervals for the true parameter value (τ = 0.55) based
on 100 independent runs of ACC are shown in Figure 3. In this example (as well as the next), the
application of ACC is the same as that of ABC since we choose rn(τ) ∝ 1/τ (and rn(θ, τ) ∝475

1/τ in the next example); however, we emphasize the correct coverage of the true parameter
value.

Now, consider the case where both (θ, τ) are unknown. Here, we choose the summary statis-
tics θ̂S = Median(x1, . . . , xn) and τ̂S , defined above. Setting rn(θ, τ) ∝ 1/τ , we can again
derive valid frequentist confidence regions for (θ, τ). In this simulation, we observe a sample480

of size n = 400. The resulting joint estimates for (θ, τ) (both with and without the regres-
sion adjustment) and the coverage of the 95% confidence regions for the true parameter values
((θ, τ) = (10, 0.55)) based on 100 independent runs of ACC are shown in Fig. 3.
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Fig. 3: Plots of the estimated parameter values from 100 independent samples of Cauchy data.
The true parameter values are denoted by dotted lines; the coverage of the 95% ACC-based
confidence intervals/regions is in parentheses; regression adjusted estimates are denoted with
(∗). (a) ACC estimate for τ supposing θ is known. (b) ACC estimate for θ for a pivotal summary
statistic Sn = x̄ supposing τ is known. (c) ACC estimates and regression adjusted estimates
where both (θ, τ) are unknown parameters.

Finally, to close this Cauchy example, we consider an example where the Bernstein-von Mises-
type asymptotic theorems do not apply but we can still use ACC to derive valid frequentist485

inference. Consider again, the case where θ is unknown but τ is known but now suppose we
apply ACC with the summary statistic chosen to be the sample mean, Sn = x̄. This choice of
summary statistic is not asymptotically normal and that the ABC-posterior will never come near
the Bayesian target posterior (see Fig. 1). However, (Sn − θ) ∼ Cauchy (0, τ) is a distribution
in a location family so by Theorem 1, we can derive valid frequentist confidence intervals for θ490

with ACC if we choose rn(θ) ∝ 1.
In the numerical study, we observe a sample of size n = 400 and assume τ = 0.55 is known.

The resulting estimates for θ and the coverage of the 95% confidence intervals for the true pa-
rameter value (θ = 10) based on 100 independent runs of ACC are shown in Fig. 3. In this
example, the confidence intervals based on ACC are shown to have the correct coverage of the495

true parameter value despite the asymptotic non-normality of the summary statistic.
This result illustrates an example where the typical Bayesian justification for ABC does not

hold since the asymptotic distribution of the summary statistic is non-Gaussian. ACC however,
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still provides valid frequentist inference by taking advantage of the exact pivotal structure of a
summary statistic without relying on a large sample size. 500

4·2. A discretely observed birth-death process
We also illustrate our approximate computing method using a more complex birth-death pro-

cess. Consider the problem of estimating the parameters for a discretely observed simple linear
birth-death process, known also as a Kendall’s process. This model forms a continuous-time
Markov chain {Xu : 0 ≤ u ≤ t}, whereXu counts the number of individuals present in the pop- 505

ulation at time u and t is the end time point. Let X0 be the initial size of the population and let µ
and λ be the per-particle death and birth rates, respectively; the continuous Kendall’s process is
described by the following differential equation:

dPr(Xu = b | X0 = a)

du
= (b− 1)λPr(Xu = b− 1 | X0 = a)

+(b+ 1)µPr(Xu = b+ 1 | X0 = a)

−b(λ+ µ)Pr(Xu = b | X0 = a).

In practice, the continuous process is not observed, instead the data may consist of discretely ob-
served points {XS : s = 0, τ, 2τ, . . . , kτ = t}, where τ ∈ Z+ defines the size of the time inter- 510

vals over which we observe the birth-death process. Though the mathematical properties of this
simple process are well known, for illustrative purposes, we consider the problem of conducting
inference on the model parameter θ = λ/µ. As described in Immel (1951) and Keiding (1975), if

τ = (log λ− logµ)/(λ− µ), then the estimator θ̂S =
∑kτ

s=1XS

{∑(k−1)τ
s=0 XS

}−1
is the max-

imum likelihood estimator for θ in the discretely observed birth-death process. Furthermore, if 515

we consider θ̂S to be an estimate derived from a single (k-dimensional) vector observation from
a population of size nX0, then for fixed X0,

(nX0)
1/2(θ̂S − θ)

L−→ N

(
0,
θ(1− θ2)

1− θk

)
.

Therefore C1 holds for this choice of summary statistic and through simulations we verify that
ACC-based confidence intervals have at least the nominal coverage of level of the true parameter
value θ0, even for a data-driven choice of rn(θ). Furthermore, we compare the performance of 520

ACC to an analogous application of ABC demonstrating the computational advantage of ACC.
(See Figure 4.)

To simulate observations from a discrete linear birth-death process, we set the initial pop-
ulation size X0 and generate a continuous-time Markov chain where pr(birth) = λ/(λ+ µ)
and pr(death) = 1− pr(birth) and the time until the next event is distributed exponentially 525

with a mean equal to the product of the current size of the population and (µ+ λ). The pro-
cess continues until either the population dies out or until we reach some fixed time point t.
For the examples summarized in Fig. (4) we set X0 = 300 and t = 100 and chose true param-
eter values µ = 0.54, λ = 0.462, therefore θ = 0.855̄ and τ = 2. We assume it is known that
τ ≈ {log(λ)− log(µ)}/(λ− µ) and that 0 < θ < 1, i.e. that µ > λ. 530

To ensure we meet assumptions C2–C4 we define a data-driven rn(θ) in-line with the guide-
lines of Section 3.4. Partition the observed ordered data into smaller subsets of size k = m1/2

where m is the number of non-zero observations from the original data set of size n. Then, com-
pute θ̂Si for i = 1, . . . , k and these values of θ̂Si are independent of each other. Denote the mean
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Fig. 4: Application of ABC and ACC to data from a birth-death process. (a) A sample from the
flat prior π(θ) in ABC (gray) to a sample from the data-dependent distribution rn(θ) in ACC
(black). Note the more concentrated region defined by rn(θ). Compare the estimated θ values
and acceptance rates of ABC (b) and ACC (c). The true parameter value is shown by a dotted
line, the coverage of the 95% confidence intervals is show in parentheses. Note the improvement
in acceptance rates for ACC.

of these values k by θ̄Si and the variance by σ̂2θSi and define

rn(θ) ∼ N
(
θ̄Si, σ̂

2
θSi

)
I{0 < θ < 1}.

The region defined by the analogous flat prior in ABC, π(θ) ∼ U(0, 1), is more disperse than
the region defined by rn as shown in Fig. 4. In fact, the median acceptance rate for parameter
values drawn by rn(θ) in ACC is 0.066 while the median acceptance rate for parameter values
drawn from the ABC prior is 0.020, illustrating the huge gain in computational efficiency by
using a data-dependent rn(·).535

5. DISCUSSION

We have introduced ACC, a likelihood-free method that does not depend on any Bayesian
assumptions such as prior information. Rather than compare the output to a target posterior
distribution, ACC quantifies the uncertainty in estimation by drawing upon a direct connection
to a confidence distribution. This connection guarantees that confidence intervals/regions based540

on ACC methods capture the truth about the parameters of interest at least at the nominal level
and thus we provide theoretical support for ACC-based inference including, but not limited to,
the special case where we do have prior information (i.e. ABC). Furthermore, in the case where
the selected summary statistic is sufficient, the ACC method is equivalent to maximum likelihood
inference. In addition to providing sound theoretical results for inference, the framework of ACC545

sets the user up for better computational performance by allowing the data to drive the algorithm
through the choice of rn. The potential computational advantage of ACC has been illustrated
through several simulation examples.
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There are three main sources of error in applying ACC; the error due to the choice of εn, the
Monte Carlo error due to a finite choice of N , and possibly the asymptotic error due to a finite 550

sample size n. The first type of error is comparable to the error in ABC methods as detailed in
Section 3. The Monte Carlo error, which is not discussed in this paper is also common to ABC
methods and represents a practical limitation of computational methods. Finally, the error due to
a finite sample size may or may not be an issue in ACC, depending on the problem at hand.

Variants of Algorithm 1 (ABC) aim to improve the Monte Carlo sampling from Πε(θ | sobs) 555

and are frequently used due to the inefficiency of Algorithm 1 when the prior distribution is
very different from the targeted posterior distribution. Such improved sampling techniques are
not necessary for Algorithm 2 (ACC) provided the chosen rn(·) is good in the sense that a
large part of the simulated summary statistics lie within the sufficiently small ε neighborhood.
For example, rn(·) chosen as in Section 3·4 works well provided the distribution of the point 560

estimate θ̂ converges to θ0 with rate o(a−3/5n ). The efficiency of Algorithm 2 can also be seen by
comparing it to the following importance sampling variant of Algorithm 1:

[Step1] Generate θ1, . . . , θN from q(θ) and simulate s(i) from Mθ

[Step2] Accept s(i) when | s(i) − sobs |< ε and assign weight wi = π(θi)/q(θi).

For importance sampling ABC, even if the proposal density q(·) is set to rn(·), Algorithm 565

1 is less efficient than Algorithm 2 because the importance weight wi is unbounded while the
corresponding weight in Algorithm 2 is unity.

While it may be difficult to find a satisfactory rn(·) that yields reasonable acceptance prob-
abilities for Algorithm 2, the various improved sampling techniques of ABC can be naturally
adapted to improve the performance of ACC. These variants of Algorithm 2 will be more ef- 570

ficient than the corresponding variants of Algorithm 1 provided rn(·) is closer to the proposal
density q(·) than π(·).

We find the philosophical interpretation of the results admitted through ACC to be more natu-
ral than the Bayesian interpretation of ABC. Within a frequentist setting, it makes sense to view
the many different potential confidence distributions produced by ACC using different summary 575

statistics as various choices of estimators. However, within the Bayesian framework, there is no
clear way to choose from among the different ABC posteriors due to various choices of sum-
mary statistics. In particular, there is an ambiguity in defining the probability measure on the
joint space (P,X ) when choosing among different ABC posteriors. Rather than engaging in a
pursuit to define a moving target such as this, ACC maintains a clear frequentist interpretation 580

thereby offering a consistently cohesive interpretation of likelihood-free methods.
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[C5] There exists some δ0 > 0 such that P′ = {θ :| θ − θ′ |< δ′} ⊂ P, rn(θ) ∈ C2(P′), and rn(θ0) >590

0.
[C6] The kernel satisfies (i)

∫
vK(v)dv = 0; (ii)

∏l
k=1 vikK(v)dv <∞ for any coordinates

(vi1 , . . . , vil) of v and l ≤ p+ 6; (iii)K(v) ∝ K(‖v‖2Λ) where ‖v‖2Λ = vTΛv and Λ is a positive-
definite matrix, and K(v) is a decreasing function of ‖v‖Λ; (iv) K(v) = O(exp{−c1‖v‖α1}) for
some α1 > 0 and c1 > 0 as ‖v‖ → ∞.595

For C7–C8 define the random variable Wn(s) = anA(θ)−1/2{s− η(θ)} and let f̃Wn be the density for

Wn under f̃n(w; θ) and let ˜̃
fWn

(w; θ) be the density for Wn under the normal approximation model from
C1.

[C7] There exists αn satisfying αn/α
2/5
m →∞ and a density rmax(w) satisfying C6 (ii)-(iii) where

K(v) is replaced with rmax(w), such that supθ∈P0
α | f̃Wn

(w; θ)− ˜̃
fWn

(w; θ) |≤ c3rmax(w) for600

some positive constant c3.
[C8] The following statements hold: (i) rmax(w) satisfies C6 (iv); and (ii) supθ∈PC0 f̃Wn

(x; θ) =

O(e−c2‖w‖
α2

) as ‖w‖ → ∞ for some positive constants c2 and α2, and A(θ) is bounded in P .
[C9] The first two moments,

∫
Rd sf̃n(s; θ)ds and

∫
R ss

T f̃n(s; θ), exist.

Proof of Lemma 1605

The density of rε can be expressed by

πε(θ|sobs) ∝
∫
Rd
π(θ)f̃n(s | θ)K{ε−1(s− sobs)}ds

= π(θ)

∫ {
f̃n(sobs | θ) + f̃

′

n(s̄ | θ)(s̄− s) + (1/2)f̃
′′

n (s̄ | θ)(s̄− s)2
}
K{ε−1(s− sobs)}ds

∝ π(θ)f̃n(sobs|θ) +O(ε2),

where f̃
′′

n (· | θ) is the second derivative of f̃n(· | θ) and s̄ is a value/vector between sobs and sobs + uε.610

The equality above holds due to a Taylor expansion of f̃n(· | θ) with respect to sobs and the final proportion
holds using the substitution u = ε−1(s− sobs) and that

∫
Rd K(u) du = 1 and

∫
Rd uK(u) du = 0.

Proof of the Claim in Section 2
By its definition, Dn(·) = D(·, sob) is a sample-dependent cumulative distribution function on the pa-

rameter space. We also have Dn(θ0) = D(θ0, sob) = pr∗{2θ̂S − θACC ≤ θ0 | sob} = pr∗{θACC − θ̂S ≥615

θ̂S − θ0 | sob} = 1−G(θ̂S − θ0). SinceG(t) = pr{θ̂S − θ0 ≤ t}, we haveG(θ̂S − θ0) ∼ Unif(0, 1) un-
der the probability measure of the random sample population. Thus, as a function of the random Sn,
Dn(θ0) = Dn(θ0, Sn) ∼ Unif(0, 1). By the univariate confidence distribution definition,Dn(·) is a con-
fidence distribution function.

Furthermore, Dn(·) can provide us confidence intervals of any level. In particular, for any α ∈620

(0, 1), pr{θ0 ≤ D−1
n (1− α)} = pr{Dn(θ0) ≤ 1− α} = 1− α. Thus, (−∞, D−1

n (1− α)] is a (1− α)-
level confidence interval. Note that, Dn(2θ̂S − θACC,α) = pr∗{2θ̂S − θACC ≤ 2θ̂S − θACC,α | sob} =

1− pr∗{θACC < θACC,α | sob} = 1− α. So, D−1
n (1− α) = 2θ̂S − θACC,α. Therefore, (−∞, 2θ̂S −

θACC,α] is also a (1− α)-level confidence interval for θ.

Proof of Lemma 2625

Since

| pr{θ0 ∈ Γ1−α(Sn)} − (1− α) |=| pr{W (θ, Sn) ∈ A1−α | θ = θ0} − (1− α) |
≤ | pr∗{V (θACC , Sn) ∈ A1−α | Sn} − (1− α) | + | pr{W (θ, Sn) ∈ A1−α | θ = θ0}

−pr∗{V (θACC , Sn) ∈ A1−α | Sn} |,

by the definition of A1−α in (3), it follows that | pr∗{V (θACC , Sn) ∈ A1−α | Sn} − (1− α) |= o(δ),
almost surely. Therefore, by Condition A, we have | pr{θ0 ∈ Γ1−α(Sn)} − (1− α) |≤ op(δ) + op(ε) =
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op(ε ∨ δ). Furthermore, if Condition A holds almost surely, | pr{θ0 ∈ Γ1−α(Sn)} − (1− α) |≤ o(δ) +
o(ε) = o(ε ∨ δ), almost surely. 630

Proof of Theorem 1
Let’s consider a more general pivotal case where T = Ψ(Sn, θ0) is free of parameter θ0. In Algorithm 2,

we simulate θ∗ ∼ rn(θ) and S∗n ∼Mθ∗ . Since Ψ is a pivot function, we have Ψ(S∗n, θ
∗) | θ∗ ∼ g(T ). De-

note by T ∗ = Ψ(S∗n, θ
∗), it follows that unconditionally, (T ∗, θ∗) ∼ rn(θ)g(T ). In Algorithm 2, we only

keep those θ∗ which generate S∗n such that | S∗n, sob |≤ εn. So conditional on sob, TACC = Ψ(sob, θACC)
follows the distribution with density

rεn(T | sob) ∝
∫
rn(θ)g(T )Kε (‖uT,θ, sob‖) dθ ∝ g(T )

∫
rn(θ)Kε (‖uT,θ, sob‖) dθ

In the above formula, uT,θ is the solution of T = Ψ(u, θ) for any given values of T and θ. Also, Kε(·) =
K(·/ε)/ε is a scaled kernel function by the bandwidth ε. If

∫
rn(θ)Kε (‖uT,θ, sob‖) dθ is free of T and

finite, then Ψ(Sn, θACC) | sob ∼ G(T ) as desired.
We now verify that

∫
rn(θ)Kε (‖uT,θ, sob‖) dθ is free of T for Sn from a scale family and remark 635

that the proofs for Part 1 and Part 3 are similar. In particular, suppose Sn has distribution (1/θ)g(Sn/θ),
then T = Ψ(Sn, θ) = Sn/θ ∼ g(t) is a pivot. So, for any given (t, θ) pair we have ut,θ = tθ. Thus, with
variable transformation u = (tθ − sobs)/ε and assuming that K(·) is symmetric, we have∫

rn(θ)Kε (‖uT,θ, sob‖) dθ =

∫
1

εθ
K (|tθ − sobs|/ε) dθ

=

∫
1

εu+ sobs
K(u)du = s−1

obs + o(ε),

which is free of t.

Proof of Theorem 2 640

[Wentao, please insert proof here]

Proof of Theorem 3
[Wentao, please insert proof here]
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